Condensed Matter Physics
Overview
We investigate the structure and properties of matter on length scales from sub-nanometer to the macroscopic. Focusing on materials ranging from quantum dots and thin films with dimensions of nanometers to macroscopic solid and fluid systems, we investigate atomic structure, molecular conformation, the structure of electronic states, and magnetism. Our work ranges from the basic to the applied and frequently has an interdisciplinary character. Extensive simulations are often employed to provide detailed understanding of the experimental data. Experimental tools include x-ray and neutron scattering, optical microscopy, THz spectroscopy, scanning probe microscopies, and calorimetry. Moreover, the extensive facilities of the departments of Electrical and Computer Engineering, Chemical Engineering, Materials Science and Engineering, Chemistry, and Biological Sciences are available to us. Some of our work uses national facilities for synchrotron x-ray and neutron scattering.
In our theoretical efforts, we try to understand the fundamental principles underlying thermal, electronic and mechanical properties of materials by employing theoretical methods of statistical mechanics, quantum mechanics and applied mathematics in order to simulate abstract or realistic model systems that relate to phase transitions, hydrodynamics, metals, semiconductors and biological materials.
A focus of the condensed matter group, both for present research and future hiring, is in the area of Quantum Electronics.
See Our Condensed Matter Labs Here:
Dr. Ben Hunt's lab: